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One of the major challenges in the study of thermal transport and its analysis, based on the hyperbolic
model associated with Cattaneo equation, is the fact that it is necessary to determine the thermal
relaxation time for the analyzed materials. This parameter has been an elusive physical quantity to be
determined experimentally even though it is of crucial importance in heat transport. In this paper
a system formed by a semi-infinite layer in contact with a finite one, that is excited by a modulated heat
source is studied. It is shown that a frequency range can be found in which the amplitude and phase of
the spatial component of the oscillatory surface temperature show strong oscillations when the thermal
relaxation time of the finite layer is close to its thermalization time. When the thermal effusivities of the
layers are quite different or their thermal relaxation times are similar, it is shown that simple analytical
expressions for the values of the maxima and minima of the oscillations as well as for the frequencies, at
which they occur, are obtained. These results were used to establish a methodology to determine the
thermal relaxation time as well as additional thermal properties of the finite layer.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Heat transport has been traditionally studied based on Fourier
law, which is supported by an impressive quantity of useful and
successful results showing very good agreement with experimental
data for most of the analyzed experimental conditions [1,2].

However, it is well known that Fourier heat diffusion law
predicts an infinite velocity for heat propagation, in such a way that
a temperature change in any part of the material results in an
instantaneous perturbation at each point of the sample [3,6]. The
origin of this fundamental problem is due to the fact that Fourier
law establishes that, when a temperature gradient at time t is
imposed, the heat flux starts instantaneously at the same time t.
Considering that heat transport is due to microscopic motion and
collisions of electrons and phonons, it can be inferred that the
Fourier condition on the velocity of heat transport cannot be sus-
tained [3–8].

One of the most simple and accepted approaches that surmounts
the limitation of Fourier law [3,4], was suggested by Cattaneo [9] and
independently by Vernotte [10]. It consists of modifying the heat flux
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equation, incorporating the finite propagation speed of heat. The
one-dimensional form of Cattaneo–Vernotte equation is,

Jðx; t þ sÞ ¼ �k
vTðx; tÞ

vx
; (1)

where t is the time, x is the spatial coordinate, J [W/m2] is the heat
flux, T (K) is the absolute temperature, k [W/m K] is the thermal
conductivity and s(s) is the thermal relaxation time, which repre-
sents the time necessary for the initiation of the heat flux after
a temperature gradient has been imposed. Eq. (1) establishes that
the heat flux does not start instantaneously, but rather grows
gradually, depending on the thermal relaxation time, after the
application of the temperature gradient [3].

From Eq. (1), expanding the heat flux in Taylor series around
s¼ 0, and approximating at first order in s,

Jðx; tÞ þ s
vJðx; tÞ

vt
¼ �k

vTðx; tÞ
vx

: (2)

On the other hand, energy conservation equation is given by [1]

vJðx; tÞ
vx

þ rc
vTðx; tÞ

vt
¼ Sðx; tÞ; (3)

where r [kg/m3] is the density, c [J/kg K] is the specific heat of the
medium and the source term S [W/m3] represents the rate per unit
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Nomenclature

a non-dimensional constant
A amplitude of the spatial part of the oscillatory surface

temperature
c specific heat
f frequency
F time-independent factor of the heat source
I light beam intensity
J heat flux
k thermal conductivity
l thickness of the first layer
q complex wave number
Re() real part
S heat source
t time
T temperature
x spatial coordinate
X non-dimensional parameter

Greek symbols
a thermal diffusivity
D difference
3 thermal effusivity
q spatial part of the oscillatory temperature

l complex parameter
m classical thermal diffusion length
r density
s thermal relaxation time
f phase of the spatial part of the oscillatory surface

temperature
c real parameter
u angular frequency
U ratio of the maximum to minimum amplitude, Amax/

Amin

Subscripts
ac relative to the time-dependent temperature
amb ambient
dc relative to a time-independent temperature
m thermalization
max maximum value
min minimum value
0 relative to the semi-infinite layer
n natural number
01 relative to the ratio of thermal effusivities

Superscripts
(0) relative to the term of X, independent of the thermal

relaxation time.
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volume at which the heat flux is generated. Combining Eqs. (2) and
(3), the hyperbolic Cattaneo–Vernotte heat conduction equation is
obtained [3,9–11]:

v2Tðx;tÞ
vx2 �1

a

vTðx;tÞ
vt

� s
a

v2Tðx;tÞ
vt2 ¼�1

k

�
Sðx;tÞþs

vSðx;tÞ
vt

�
; (4)

where a [m2/s] is the thermal diffusivity of the material [12]. On the
left hand side of this equation, the second order time derivative
term indicates that heat propagates as a wave with a characteristic
speed

ffiffiffiffiffiffiffiffi
a=s

p
and the first order time derivative corresponds to

a diffusive process, which damps spatially the heat wave. Eq. (4)
reduces to the parabolic heat conduction equation (based on
Fourier law) for s¼ 0 or in steady-state conditions vJðx;tÞ=vt¼0
[3,13].

Thermal relaxation time is associated with the average
communication time among the collisions of electrons and
phonons [3], and it has been theoretically estimated for metals,
superconductors and semiconductors to be of the order of micro-
seconds (10�6 s) to picoseconds (10�12 s) [11,14,15]. These small
values of the thermal relaxation time indicate that its effects will
not be significant if the physical time scales are of the order of
microseconds or larger. In these situations Fourier law provides an
adequate approach. However, in modern applications such as in
analysis and processing of materials using ultrashort laser pulses
and high speed electronic devices, the finite value of the thermal
relaxation time should be considered [13–18].

The measurement of the thermal relaxation time and the
subsequent hyperbolic effects in heat transport have been elusive
problems [15,19]. In fact there are research groups indicating that
hyperbolic effects can be easily observed, and that they are asso-
ciated with thermal relaxation times of the orders of seconds in
materials with non-homogeneous structure [16–18]. In contrast,
other authors have criticized their experimental methodologies
and have suggested alternative experimental arrangements;
obtaining results that do not seem to be affected by hyperbolic
effects [20,21]. Therefore, in this last case, if Cattaneo equation is
considered adequate, it would indicate that the observed results
would be associated with very short thermal relaxation times [20].
More careful experiments, using a modulated heat source, for
similar materials, have shown that in order to determine the
thermal relaxation time, it is important to measure simultaneously
the thermal diffusivity, also using a hyperbolic approach [18]. In
this context, Roetzel et al. [18] have found hyperbolic effects,
associated with thermal relaxation times of at least one order of
magnitude smaller when compared with the results of Kaminski
[16] and Mitra et al. [17]. In the experiments reported by Roetzel et
al., the methodology is based on a phase lag method, however given
that this is a feature that is also present in the parabolic approach, it
is not easy to accept or reject the possibility of a hyperbolic
behavior. It has also been shown that the thermal diffusivity and
thermal relaxation time can be determined from the thermal
profiles; however the suggested methodology makes difficult the
accurate determination of these parameters, due to the fact that
a small change in the thermal diffusivity can result in a large change
in the thermal relaxation time [18].

It is of the main importance to develop a methodology to
establish when without a doubt hyperbolic effects are being
observed and how from these results, a measurement of the
thermal relaxation time can be obtained. For steady-state boundary
conditions, a comprehensive discussion of both the hyperbolic
effects and the methods for the measurement of the thermal
relaxation time have already been presented in the recent book by
Wang, Zhou and Wei [19] and in the articles of Mengi and Turhan
[22], and Tan and Yang [23]. Otherwise, for modulated heat sources,
it could be expected that the advantages found in photothermal
science in the analysis of thermal depth profiles using Fourier
equation can also arise when the same kind of heat sources is used
with hyperbolic Cattaneo–Vernotte equation [11].

In this paper, heat transport governed by Cattaneo–Vernotte
equation in a system formed by a finite layer in perfect thermal contact
[24] with a semi-infinite layer of a different material is analyzed when
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the first layer is excited with a periodic source. It is shown that, when
the thermal relaxation time of the finite layer is near to its thermali-
zation time, it is possible to find a frequency range, at which the
temperature at both sides of the finite layer shows an evident hyper-
bolic behavior, depending on the boundary conditions. In such
conditions, oscillations of the spatial component of the surface
temperature as a function of the modulation frequency are obtained.

When the thermal effusivities of the layers are quite different or
when the thermal relaxation times of both layers are similar, it is
shown that analytical expressions for the values of the maxima and
minima as well as the frequencies at which they occur, can be
obtained. From these results, the thermal relaxation time can be
determined. It is also shown that depending on the ratio of thermal
effusivities of the layers and the boundary conditions, the thermal
properties of the finite layer can be determined simultaneously.

2. Formulation of the problem and solutions

Let us consider the configuration shown in Fig. 1, in which the
system is excited at the surface x¼ 0, with a modulated heat source
at frequency f, of the form [11,25]:

Sðx; tÞ ¼ FðxÞð1þ cosðutÞÞ ¼ Re
h
FðxÞ

�
1þ eiut

�i
; (5)

where u¼ 2pf, Re(x) is the real part of x and F [W/m3] is the spatial
distribution of deposited energy over the sample per unit volume and
unit time. The temperature at any point of the sample is given by:

Tðx; tÞ ¼ Tamb þ TdcðxÞ þ Tacðx; tÞ; (6)

where Tamb corresponds to the ambient temperature, Tdc(x) and
Tdcðx; tÞ ¼ RejqðxÞeiwt j are the stationary raising and periodic
components of the temperature, these last two terms are due to the
first and second terms of the heat source, respectively. From now
on, the operator Re() will be omitted, taking into account the
convention that the real part of the expressions of the temperature
must be taken to obtain physical quantities. Our attention will be
focused on the spatial component [q(x)] of the oscillatory part of the
temperature, due to the fact that it is the quantity of interest in lock-
in and similar detection techniques.

Inserting Eqs. (5) and (6) into Eq. (4) and considering that there
are not any internal heat sources, then for x> 0, the general solu-
tion of Eq. (4) for q¼ (x) is given by:

qðxÞ ¼ Beqx þ Ce�qx; (7)

where B and C are two constants that depend on the boundary
conditions of the particular problem and q is given by:

q ¼
ffiffiffiffiffi
iu
a

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ius

p
¼ cþ ic�1

m
; (8a)

m ¼
ffiffiffiffiffiffi
2a

u

r
¼

ffiffiffiffiffiffi
a

pf

r
; (8b)

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðusÞ2
q

� us

r
: (8c)
x0 l

 k, α, τ  k0, α0, τ0

Fig. 1. Schematic diagram of the analyzed system, with k, a, s and k0, a0, s0 being the
thermal conductivity, thermal diffusivity and thermal relaxation time of the finite and
semi-infinite layers respectively. The excitation heat source is applied at x¼ 0.
Assuming that the layers are in perfect thermal contact, that is to
say, there are not any interface thermal resistance between them
[1,24,26], the boundary conditions obtained from the usual
requirement of temperature and heat flux continuity at the inter-
face x¼ l, are given by:

q
�

x�
�
¼ q

�
xþ
�
; (9a)

k
�
x�
�

1þ ius�
dq
�
x�
�

dx
¼

k
�
xþ
�

1þ iusþ
dq
�
xþ
�

dx
; (9b)

where the superscripts ‘‘þ’’ and ‘‘�’’ indicate that the limit x / l is
taken from the right and left of the point x¼ l, respectively. From
now on, two types of modulated heat sources are considered, the
first one specifying the temperature and the second one the heat
flux, in both cases, at the surface x¼ 0.
2.1. Dirichlet problem

In this case the following boundary condition is considered:

qðx ¼ 0Þ ¼ q0; (10)

where q0 is a positive non-zero constant. From Eqs. (7), (9) and (10),
the solution for the spatial part of the thermal wave at x¼ l, is given
by:

qðlÞ ¼ 2q0�
1þ l

�
eql þ ð1� lÞe�ql

; (11)

where q is defined by Eq. (8a) for the thermal properties of the
finite layer and l ¼ ð30=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ iusÞ=ð1þ ius0Þ

p
; being 3 ¼ k=

ffiffiffi
a
p

;

the thermal effusivity of the finite layer and 30 the corresponding
one of the semi-infinite layer.
2.2. Neumann problem

Considering that the surface x¼ 0 is excited by a periodic heat
flux, this situation can be fulfilled when the opaque surface of
a material is uniformly illuminated by a laser light beam of peri-
odically modulated intensity. In this case the heat source is given by
[11,27]:

I0½1þ cosðutÞ�=2 ¼ Re
h
I0
�

1þ eiut
�
=2
i
;

where the I0¼ Fh(1� R)I, F being a parameter determined by the
optical, thermal and geometric properties of the first layer, h the
efficiency at which the absorbed light is converted into heat, R is the
reflection coefficient of the surface at x¼ 0 and I [W/m2] is the
intensity of the light beam [11,27,28]. Considering that the sample is
uniformly illuminated with a fixed light source the factor I0 can be
taken as nearly constant and independent of the modulation
frequency as it is usually assumed in similar problems [11,28]. The
boundary condition in this case has the following form:

� k
1þ ius

dqðxÞ
dx

				
x¼0
¼ I0

2
: (12)

From Eqs. (7), (9) and (12), the solution for the spatial part of the
thermal wave at x¼ 0, is given by:

qð0Þ ¼ I0
2

1þ ius
kq

ð1þ lÞeql þ ð1� lÞe�ql

ð1þ lÞeql � ð1� lÞe�ql
; (13)

and for x¼ l, it is obtained:
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qðlÞ ¼ I0
2

1þ ius
kq

2�
1þ l

�
eql � ð1� lÞe�ql

: (14)

Expressing q(x¼ 0,l) as a complex function in its polar form, both its
amplitude A(f) and phase f(f), can be obtained at x¼ 0,l respec-
tively. Final expressions are long and complicated, however when
the ratio of the thermal effusivities of the layers is quite different
from the unit or when their thermal relaxation times are similar,
useful expressions for the determination of the thermal properties
can be found.

3. Analysis and discussions

The analysis of the thermal profiles is performed at x¼ l for the
Dirichlet boundary condition and at x¼ 0 and x¼ l for the Neu-
mann boundary condition.

3.1. Dirichlet problem

3.1.1. Semi-infinite layer thermal effusivity much lower than the one
of the finite layer: 30/3¼ 0

An approximate example of this case is given by a metallic layer
of high thermal effusivity in contact with an air layer acting as the
semi-infinite medium [27]. From Eq. (11), the results for the
amplitude and phase reduce to:

Aðf Þ ¼ q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

�
lc
m

�
þ cos2

�
l

mc

�r ; (15a)

fðf Þ ¼ � l
mc
þ arctan

2
4 sin

�
2l
mc

�
e

2lc
m þ cos

�
2l
mc

�
3
5; (15b)

where m and c are defined by Eqs. (8b) and (8c) for the thermal
properties of the first layer.

The normalized amplitude and phase as a function of the
modulation frequency are shown in Fig. 2(a) and (b), respectively;
for three values of the thermal relaxation time of the first layer
s¼ 5�10�7 s, 9�10�7 s which are characteristic of crystal semi-
conductors [14]. The thickness of the finite layer is l¼ 20 mm and its
thermal diffusivity is a¼ 5�10�5 m2/s, from which it is obtained
that the thermalization time (sm¼ l2/4a) [29,30] of the first layer is
sm¼ 2�10�6 s. The corresponding amplitude and phase predicted
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Fig. 2. Frequency dependence at x¼ l of the (a) normalized amplitude and (b) phase of the
parabolic model and the solid lines to the hyperbolic one for three values of s:s1¼5�10�7
by the Fourier parabolic approach (s¼ 0) are shown in the same
figures by dashed lines.

In Fig. 2(a) it is shown that the parabolic amplitude presents the
typical behavior of traditional thermal wave phenomena based on
Fourier equation, in which a strong attenuation of the temperature,
when the frequency increases, is observed [2,31]. In contrast, when
s becomes closer to the thermalization time, heat transport
enhances, which is a characteristic of hyperbolic behavior, due to
the second order time derivative [Eq. (4)]. It can be observed that
for low frequencies (us¼ 2pf� 1), the behavior of the amplitudes
predicted by the parabolic and hyperbolic models is similar, in
contrast for higher frequencies (us [ 1), where the hyperbolic
effects are dominant, the hyperbolic model predicts an oscillatory
amplitude.

For a first order approximation in (us)�1 Eq. (15a) can be
simplified to,

Aðf Þ ¼ q0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ða=2Þ þ cos2ðusaÞ

q ; (16)

where a ¼ l=
ffiffiffiffiffi
as
p

: Looking at the oscillatory term in Eq. (16), it can
be inferred that the amplitude A(f) has maxima and minima given
by,

Amax ¼
q0

sinhða=2Þ; (17a)

Amin ¼
q0

coshða=2Þ; (17b)

which occurs at the following modulation frequencies

fn ¼
1
2l

ffiffiffi
a

s

r 

nþ 1

2; A ¼ Amax;
n; A ¼ Amin;

(18)

where fn¼un/2p, n¼ 1,2,3,..
The measurement of the maximum and minimum values of the

amplitude as well as the frequencies at which they occur would
allow to establish a methodology to determine the thermal relax-
ation time s of a layer of thickness l and known thermal diffusivity
a using Eqs. (17) and (18), as follows:

- Method 1. – Measuring the value of the frequency for which
the amplitude has a maximum or minimum and using Eq. (18)
to determine s.
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- Method 2. – Measuring the value of a maximum or minimum of
the amplitude and using Eqs. (17) to determine sða ¼ 1=

ffiffiffiffiffi
as
p
Þ:

In Fig. 2(a) the horizontal dotted lines follow the maximum and
minimum values of the amplitude predicted by Eqs. (17a) and (17b). It
can be observed that the first two peaks or valleys are not well pre-
dicted by these equations and therefore in Method 1 or 2, it is necessary
to use n¼ 3 or higher values of n, for which the prediction improves.

In Fig. 2(b), the phase spectrum of the temperature at x¼ l is
shown. It can be observed that the phase does not present an
oscillatory behavior, and even though it could be used to determine
the thermal diffusivity or thermal relaxation time [18], it would
imply a different and probably less sensitive methodology than the
one presented in this work.

3.1.2. Semi-infinite layer thermal effusivity much higher than the
one of the finite layer: 30/3 / N

An approximate example of this case is given by a copper layer
acting as the semi-infinite one and the first layer being made of
glass. In this case the contribution to the temperature given by Eq.
(11) vanishes and therefore it cannot be used to determine the
thermal relaxation time.

3.1.3. Semi-infinite and finite layers with close thermal relaxation
times: s0¼ sþDs

An example of this case is given by a metallic layer acting as the
first one and an alloy of the same metal as the semi-infinite layer
[25]. Considering that jDsj=s and us [ 1, for a first order approxi-
mation in jDsj=s and (us)�1, the amplitude of the temperature
obtained from Eq. (11) is,

Aðf Þ ¼ q0ð1þ XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ea=2 þ Xe�a=2

�2�4X sin2ðusaÞ
q ; (19)

where,

8>>>>>><
>>>>>>:

X ¼ Xð0Þ þ Ds
s

301

ð1þ 301Þ2
;

Xð0Þ ¼ 1� 301

1þ 301
;

301 ¼ 30=3;
a ¼ l=

ffiffiffiffiffi
as
p

:

(20)

The normalized amplitude of the temperature as a function of the
modulation frequency is shown in Fig. 3, for two values of the
thermal relaxation time of the first layer (s:s1¼9�10�7 s and
s2¼1.5�10�6 s) and for the case in which 30/3¼ 0 and
Ds¼ 5�10�8 s. The corresponding amplitude predicted by the
parabolic model (s¼ 0) is shown in the same figure by dashed line.

The behavior of the amplitude predicted by the hyperbolic
model reduces to the one predicted by the parabolic model for
us� 1. When us [ 1, the parabolic amplitude falls down to zero
rapidly when the frequency increases. In contrast, in the hyperbolic
model the amplitude oscillates around a constant value with
frequency independent maxima and minima.

Similarly to the case in which 30/3¼ 0 [See Fig. 2(b)], the phase of
the temperature does not present an oscillatory behavior and
therefore it is not going to be analyzed.

The values of the maxima and minima of the temperature
amplitude are given by:

Amax ¼
q0ð1þ XÞ

ea=2 � Xe�a=2
; (21a)

Amin ¼
q0ð1þ XÞ

ea=2 þ Xe�a=2
; (21b)
where we have assumed that X> 0. These extreme values of the
amplitude [Eqs. (21a) and (21b)] occur at the frequencies given by
Eq. (18), which can be used to measure the thermal relaxation time
s, with Method 1, previously explained.

Solving Eqs. (21a) and (21b) for X, it is obtained:

X ¼

8>>><
>>>:

amaxea=2 � 1
amaxe�a=2 þ 1

; amax ¼
Amax

q0
;

� aminea=2 � 1
amine�a=2 þ 1

; amin ¼
Amin

q0
:

(22)

After having calculated s and therefore the value of a ¼ 1=
ffiffiffiffiffi
as
p

; X
can be determined using Eq. (22) and finally with Eq. (20), the value
of Ds can be measured, when 30/3 is known.

It is important to keep in mind that Eqs. (21) and (22) are only
valid for the case in which X> 0 which is not known until its
calculation is performed with Eq. (22). This problem may be sur-
mounted, if at the beginning, it is supposed that X> 0 and then
checking its validity with Eq. (22). If it is true, our starting suppo-
sition is right and the value of X can be used to determine Ds,
otherwise the labels ‘‘max’’ and ‘‘min’’ in Eq. (22) must be inter-
changed and the calculations have to be remade.

Note that these calculations are based on a first order approxi-
mation in Ds/s. For a higher order approximation, it is also possible
to obtain analytical expressions but they are much more compli-
cated than the ones presented here.

3.2. Neumann problem

3.2.1. Semi-infinite layer thermal effusivity much lower than the
one of the finite layer: 30/3¼ 0

In this case, both the amplitude and phase of q(0) given by Eq.
(13), reduce to:

Aðf Þ ¼ I0
23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðusÞ24

q
ffiffiffiffi
u
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

�
lc
m

�
þ cos2

�
l

mc

�
sinh2

�
lc
m

�
þ sin2

�
l

mc

�
vuuut ; (23)

fðf Þ ¼ �p
4
þ 1

2
arctanðusÞ � arctan

2
4 sin

�
2l
mc

�
sinh

�
2lc
m

�
3
5: (24)
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If u / 0 the amplitude of the temperature diverges and the phase
tends to �p/2, the normalized amplitude [A(f)23/I0] and phase as
a function of the modulation frequency are shown in Fig. 4(a) and
(b), taking l¼ 20 mm and a¼ 5�10�5 m2/s for two values of s
(s¼ 8� 10�7 s and 1.5�10�6 s) which are characteristic of crystal
semiconductors [14]. The dashed lines represent the amplitude and
phase corresponding to the parabolic model, which shows a strong
attenuation of the thermal waves, generated by a heat flux, when
the frequency increases [31,32]. In contrast for higher values of the
thermal relaxation time of the first layer, close to its thermalization
time (s¼ 2�10�6 s), the heat transport enhances showing oscil-
lations in amplitude and phase at high frequencies (us [ 1). For
a first order approximation in (us)�1, the amplitude given in Eq.
(23) reduces to:

Aðf Þ ¼ I0
ffiffiffi
s
p

23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ða=2Þ þ cos2ðusaÞ
sinh2ða=2Þ þ sin2ðusaÞ

vuut ; (25)

where a ¼ l=
ffiffiffiffiffi
as
p

: Analyzing the oscillatory terms in Eq. (25), it can
be found that the maxima and minima of the amplitude of the
temperature are given by,

Amax ¼
I0

ffiffiffi
s
p

23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ða=2Þ þ 1

sinh2ða=2Þ

vuut ¼ I0
ffiffiffi
s
p

23
cothða=2Þ; (26a)

Amin ¼
I0

ffiffiffi
s
p

23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ða=2Þ

sinh2ða=2Þ þ 1

vuut ¼ I0
ffiffiffi
s
p

23
tanhða=2Þ; (26b)

which occur at the frequencies given in Eq. (18), but the labels
‘‘max’’ and ‘‘min’’ must be interchanged.

Using the expression of the phase [Eq. (24)], for a first order
approximation in (us)�1, it is obtained that,

fðf Þ ¼ �p
4
þ 1

2
arctanðusÞ � arctan

�
sinð2usaÞ

sinhðaÞ

�
: (27)

The maxima and minima of the phase appear when
sin(2usa)¼�1 and sin(2usa)¼þ1, therefore at frequencies,

fn ¼
1
2l

ffiffiffi
a

s

r (
n� 1

4; f ¼ fmax;

nþ 1
4; f ¼ fmin;

(28)

and are given by,
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fmaxðnÞ ¼ �
p
4
þ 1

2
arctan

��
n� 1

4

�
p
4

�
þ arctan

�
1

sinhðaÞ

�
;

(29a)

fminðnÞ ¼ �
p
4
þ 1

2
arctan

��
nþ 1

4

�
p
4

�
� arctan

�
1

sinhðaÞ

�
;

(29b)

with n¼ 1,2,3,.. Interchanging the labels ‘‘max’’ and ‘‘min’’ in Eq.
(18), it can be seen that the maxima and minima of the phase [Eqs.
(29a) and (29b)] are shifted by a constant quantity ½ð1=2lÞ

ffiffiffiffiffiffiffiffi
a=s

p
�=4;

with respect to the corresponding frequencies of the maxima and
minima of the amplitude [Eqs. (26a) and (26b)]. Finally, the thermal
relaxation time s can be determined using Eq. (18) or (28) with
Method 1 or with Eq. (26) or (29) with the Method 2, for the phase.

3.2.2. Semi-infinite layer with thermal effusivity much higher than
the one of finite layer: 30/3 / N

In this case, both the amplitude and phase of the temperature
q(0) given by Eq. (13) reduce to the following form:

Aðf Þ ¼ I0
23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðusÞ24

q
ffiffiffiffi
u
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

�
lc
m

�
þ sin2

�
l

mc

�
sinh2

�
lc
m

�
þ cos2

�
l

mc

�
vuuut ; (30)

fðf Þ ¼ �p
4
þ 1

2
arctanðusÞ þ arctan

2
4 sin

�
2l
mc

�
sinh

�
2lc
m

�
3
5: (31)

In this case, for u / 0 the amplitude tends to be I0l=2
ffiffiffi
2
p

k while the
phase vanishes. The normalized amplitude and phase as a function
of the modulation frequency are shown in Fig. 5(a) and (b)
respectively, for the same parameters used in Fig. 4(a). The dashed
lines represent the corresponding predictions of the parabolic
model, which as it is usual, shows a strong attenuation when the
frequency increases. If the thermal relaxation time grows to values
close to the thermalization time the hyperbolic oscillations are
present for frequencies such that us [ 1.

For an approximation of first order in (us)�1, it is obtained that
the maximum and minimum values of the amplitude are equal to
those found in the foregoing case [Eqs. (26a) and (26b)] but the
maxima are located in frequencies where the minima were, and
vice versa. Similar conclusions are obtained for the maxima and
minima of the phase [Eqs. (28) and (29)].
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J. Ordóñez-Miranda, J.J. Alvarado-Gil / International Journal of Thermal Sciences 48 (2009) 2053–2062 2059
3.2.3. Semi-infinite and finite layers with close thermal relaxation
times: s0¼ sþDs

Considering that jDsj=s� 1 and us [ 1, for a first order
approximation in jDsj=s� 1 and (us)�1, the amplitude and phase
spectra given in Eq. (13) are:

Aðf Þ ¼ I0
ffiffiffi
s
p

23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ea=2 þ Xe�a=2

�2�4X sin2ðusaÞ�
ea=2 � Xe�a=2

�2þ4X sin2ðusaÞ

vuut ; (32)

fðf Þ ¼ �p
4
þ 1

2
arctanðusÞ þ arctan

�
2X sinð2usaÞ
ea � X2e�a

�
; (33)

where X and a are defined in Eq. (20). The normalized amplitude
and phase of the temperature are shown in Fig. 6(a) and (b)
respectively, for the same data used in Fig. 4(a) and considering that
30/3¼ 0.5 and Ds¼ 5�10�5 s. The corresponding amplitude and
phase predicted by the parabolic model s¼ 0 are shown in the same
figures by dashed lines. The hyperbolic model predicts again an
oscillatory amplitude and phase at high frequencies (us [ 1).

Assuming that X> 0 it is obtained that the maximum and
minimum values of the amplitude and phase:

- For the amplitude [Eq. (32)], they are given by:

Amax ¼
I0

ffiffiffi
s
p

ea=2 þ Xe�a=2
; (34a)
23 ea=2 � Xe�a=2
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Amin ¼
I0

ffiffiffi
s
p

23

ea=2 � Xe�a=2

ea=2 þ Xe�a=2
: (34b)

These extreme values of the amplitude occur at the frequencies
given by Eq. (18), with the label ‘‘max’’ and ‘‘min’’ interchanged,
which can be used to measure the thermal relaxation time s, with
Method 1. Solving Eqs. (34a) and (34b) for X, it is obtained:

X ¼
(�amax�1

amaxþ1

�
ea; amax ¼ 23

I0
ffiffi
s
p Amax;�

1�amin
1þamin

�
ea; amin ¼ 23

I0
ffiffi
s
p Amin:

(35)

After having calculated s and therefore the value of a ¼ l=
ffiffiffiffiffi
as
p

;

using Eq. (35), X can be determined using the Method 2 and finally
with Eq. (20), the value of Ds can be measured.

- For the phase [Eq. (33)], the maxima and minima are given by:

fmax ¼ �
p
4
þ 1

2
arctan

��
nþ 1

4

�
p
a

�
þ arctan

�
2X

ea � X2e�a

�
;

(36a)

fmin¼�
p
4
þ1

2
arctan

��
n�1

4

�
p
a

�
�arctan

�
2X

ea�X2e�a

�
; (36b)

which occur at the frequencies given in Eq. (28) with the labels
‘‘max’’ and ‘‘min’’ interchanged and n¼ 1,2,3,.. In this way, it is
also possible to determine the thermal relaxation time s with the
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help of Eq. (28). Using Eqs. (36a) and (36b), the quantity X is
obtained and therefore Ds can be determined with Eq. (20).

Following a similar procedure for the temperature q(x¼ l)
(transmission configuration) than the one performed for q(x¼ l)
(reflexion configuration), it can be shown that at x¼ l only the
amplitude of the temperature presents an oscillatory behavior. This
behavior of the amplitude can also be used for measuring the
thermal relaxation time s with a transmission configuration. These
results are similar to those found for the Dirichlet problem.

In the Neumann problem, the reflexion configuration presents
two advantages with respect to the transmission one; the first is
that, it is possible to measure the thermal relaxation time using the
amplitude as well as the phase. The second is that, the oscillation
amplitudes observed at x¼ 0 are much larger and therefore easier
to observe than the oscillation amplitudes at x¼ l.

3.3. Simultaneous measurement of thermal properties

It is important to mention that up to this point, our approach for
the determination of the thermal relaxation time has been based on
the assumption that some of the thermal properties, such as the
thermal diffusivity or thermal effusivity, of the materials are
known. In homogeneous material, such as the individual layers
analyzed in this work, measurements in the range of low modu-
lation frequencies, using the parabolic approach, provide the value
of the thermal diffusivity and thermal effusivity of the material
[27,33], which can be used in the regime of high frequencies, where
the hyperbolic effects are dominant, for the determination of the
thermal relaxation time. However, it has been suggested that in
order to determine the thermal relaxation time, it is important to
measure the thermal diffusivity using a hyperbolic approach [18].
This is the situation for non-homogeneous materials with
a complex structure, in which the effective thermal diffusivity of
the material could depend on the modulation frequency [34].
Therefore, it is crucial, in this type of materials, to establish the
thermal regime in which the experiments are performed and only
the simultaneous determination of some thermal properties and of
thermal relaxation time using the same heat transport model is
adequate [18]. In our approach, for some of the analyzed configu-
rations, it is possible to perform a simultaneous determination of
the thermal properties. The cases in which this is possible are the
following:

3.3.1. For the Dirichlet problem with 30/3¼ 0 and when the
monitoring of the temperature is performed at x¼ l the difference in
frequency for two successive maxima (minima) is (see [Eq. (18)])

Df hfnþ1 � fn ¼
1

ffiffiffi
a

r
: (37)
2l s

The ratio of the maximum and minimum amplitudes is (from
Eqs. (17)):

Uh
Amax

Amin
¼ cothða=2Þ; (38)

where a ¼ l
ffiffiffiffiffi
as
p

: Combining Eqs. (37) and (38), it is obtained that
the thermal relaxation time and thermal diffusivity of the finite
layer can be determined from:

s ¼ 1

2Df ln
�

Uþ1
U�1

�: (39)

a ¼ 2l2Df

ln
�

Uþ1
U�1

�: (40)
3.3.2. For the Neumann problem, when 30/3¼ 0 and the
measurement is performed at x¼ 0, the difference in frequency for
two successive minima or maxima of the amplitude and phase [see
Eqs. (18) and (28)] is also given by Eq. (37)

- From Eq. (26), the ratio between a maximum and a minimum
of the amplitude is:

U ¼ coth2ða=2Þ: (41)

Combining Eqs. (37) and (41), it is obtained that

s ¼ 1

2Df ln
� ffiffiffi

U
p
þ1ffiffiffi

U
p
�1

�: (42)

a ¼ 2l2Df

ln
� ffiffiffi

U
p
þ1ffiffiffi

U
p
�1

�: (43)

In this case, Eq. (26) can be used to additionally determine the
thermal effusivity of the first layer as follows:

3 ¼ I0
2

ffiffiffi
s
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AmaxAmin
p ; (44)

and with k ¼ 3
ffiffiffi
a
p

; its thermal conductivity can be obtained too. In
this case four thermal properties can be determined by only per-
forming an adequate frequency scan. It is important to mention
that Eq. (44) is not only valid when 30/3¼ 0 but also for any value of
this ratio, in the regime of high frequencies (us [ 1).

- For the Neumann case, it is also possible to determine the
thermal properties from the phase oscillatory behavior. From
Eq. (29) it is known that the difference between a maximum
and a minimum of the phase, when n [ 1/4, is given by,

DfhfmaxðnÞ � fminðnÞ ¼ 2arctan
�

1
sinhðaÞ

�
: (45)
From Eqs. (37) and (45) it is obtained that two thermal prop-
erties are given by,

s ¼ 1

2Df ln
�

cot
�

Df
4

��: (46)

a ¼ 2l2Df

ln
�

cot
�

Df
4

��: (47)

Analogous results can be obtained for Neumann problem at x¼ l,
however as mentioned before, higher values of the amplitude of the
oscillations are obtained at x¼ 0, therefore for such boundary
conditions, the reflexion configuration is more convenient for the
determination of the thermal properties. Similar results can also be
obtained for the case 30/3¼N.

Based on these results, it can be concluded that our method-
ology would be useful to characterize not only homogeneous
materials but also complex materials which thermal properties
could depend on the frequency, being the simultaneous measure-
ment of the thermal properties crucial. For these materials the
reflexion configuration in which Neumann boundary conditions are
fulfilled is the most adequate [18].

In order to evaluate how restrictive the conditions for the
thermal effusivity in the presented methodology are, namely 30/
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3¼ 0 and 3/3;0¼ 0, the study of the thermal profiles for the specific
case in which 30/3� 1 was done. In Fig. 7(a) and (b), the spatial part
of the amplitude and phase of the surface temperature respectively,
are depicted as a function of the frequency for three different values
of the quotient 30/3 of the thermal effusivities.

It is shown that even though for relatively high ratios as 30/
3¼ 0.1, the minima and maxima appear nearly at the same
frequencies and that the values of those extremes do not vary
significantly. In fact for the third maxima (n¼ 3), f¼ 4.33�105 Hz
and the curve that belongs to the case 3/30¼ 0, it only differs by 3.6%
and 6.9% with respect to the curves of the cases 30/3¼ 0.05 and 30/
3¼ 0.01, respectively. These ratios of thermal effusivities can be
fulfilled by common materials [27]. Of course for higher values of
the ratio of thermal effusivities (30/3), our analytical formulas are
not convenient (unless 30/3 [ 1) [see Eqs. (30) and (31)], but the
general approach is. In these situations more complex procedures
must be used and the highly structured thermal profiles can be
expected to cast successful results.

It is important to mention that the presented methodology is
useful when the interface thermal resistance is sufficiently small
to be neglected. Our approach considers that when the thermal
effusivities of the layers are quite different or their thermal
relaxation times are similar, the amplitude and phase of the
spatial part of the oscillatory surface temperature must be
independent of the thermal properties of the semi-infinite layer.
If the interface thermal resistance is considered, the contribution
of the thermal relaxation time s0, due to the semi-infinite layer
cannot be neglected. Therefore the presented methodology
would not be applicable. In this sense our approach is a first
approximation to the real problem and constitutes a limiting
case of a more general formulation for the thermal relaxation
time determination.
4. Conclusions

In this work the heat transport governed by the Cattaneo–Ver-
notte hyperbolic equation in a system formed by a finite layer in
thermal contact with a semi-infinite layer when a periodic heat
source is applied to the first one is considered. It has been shown
that remarkable oscillations of the amplitude and phase of the
spatial component of the surface temperature are obtained in the
high frequency regime for Dirichlet and Neumann boundary
conditions. The observation, in an experiment of these oscillations
would constitute an unmistakable characteristic of hyperbolic
behavior. Furthermore it has been shown that the analysis of the
oscillation is useful in the determination of the thermal relaxation
time for homogeneous layers using simple analytical formulas
when the thermal effusivities of the layers are quite different or
their thermal relaxation times are similar. Additionally, it has been
shown that our approach is useful in such cases in which it is
necessary to determine simultaneously the thermal properties of
a material in a range of modulation frequencies. It has also been
shown that the approximations performed for obtaining the
analytical formulas for the extremes are not too restrictive but that
they can be fulfilled by common materials. This work could be used
as the basis for heat transport models which can take into account
the interface thermal resistance between adjacent layers. Our
approach, in which the interface thermal resistance is neglected,
constitutes a limiting case of a more general formulation for the
thermal relaxation time determination.
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